Advertisements
Advertisements
Question
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Solution
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
= L.H.S.
=`(tan"A"+tan"B")/(cot"A"+cot"B")`
= `(tan"A"+tan"B")/(1/tanA+1/tanB`
= `(tan"A"+tan"B")/((tan"A"+tan"B")/(tan"A".tan"B"))`
= `((tan"A"+tan"B")(tan"A".tan"B"))/(tan"A"+tan"B")`
= tan A tan B
= R.H.S.
Hence, proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
\[\frac{x^2 - 1}{2x}\] is equal to
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A