Advertisements
Advertisements
Question
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Solution
`(cosecA)/(cotA+tanA)=cosA`
= LHS
= `(cosecA)/(cotA+tanA)`
= `(cosecA)/(cosA/sinA+sinA/cosA)`
=`((cosecA)/(cos^2A+sin^2A))/(sinA.cosA)`
= `(1/sinA)/(1/(sinA.cosA))`
= `(sinA.cosA)/sinA`
= cosA
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
If `sec theta + tan theta = x," find the value of " sec theta`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ