Advertisements
Advertisements
प्रश्न
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
उत्तर
`(cosecA)/(cotA+tanA)=cosA`
= LHS
= `(cosecA)/(cotA+tanA)`
= `(cosecA)/(cosA/sinA+sinA/cosA)`
=`((cosecA)/(cos^2A+sin^2A))/(sinA.cosA)`
= `(1/sinA)/(1/(sinA.cosA))`
= `(sinA.cosA)/sinA`
= cosA
= RHS
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?