Advertisements
Advertisements
Question
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Solution
LHS = `(sec A)/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1)`
= `(sin A)/(1/cos A + sin A/cos A - 1) + cos A/(1/sin A + cos A/sin A - 1)`
= `(sin A/(1 + sin A - cos A))/cos A + ((cos A)/(1 + cos A - sin A))/(sin A)`
= `(sin A.cos A)/(1 + sin A - cos A) + (sin A. cos A)/(1 + cos A - sin A)`
= `(sin A. cos A( 1 + cos A - sin A + 1 + sin A - cos A))/([ 1 + (sin A - cos A)][1 - (sin A - cos A)])`
= `(2sin A. cos A)/((1)^2 - (sin A - cos A)^2)`
= `(2sin A. cos A)/(1 - (sin^2 A + cos^2 A - 2 sin A.cos A))`
= `(2 sin A. cos A)/(1 - 1 + 2 sin A. cos A)`
= `2/2 = 1`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If cos A + cos2A = 1, then sin2A + sin4 A = ?