Advertisements
Advertisements
Question
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Solution
cos A + cos2A = 1 ......[Given]
∴ cos A = 1 – cos2A
∴ cos A = sin2A ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
∴ cos2A = sin4A .....[Squaring both the sides]
∴ 1 – sin2A = sin4A
∴ 1 = sin4A + sin2A
∴ sin2A + sin4A = 1
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove that:
tan (55° + x) = cot (35° – x)
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Choose the correct alternative:
tan (90 – θ) = ?
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`