Advertisements
Advertisements
Question
sec θ when expressed in term of cot θ, is equal to ______.
Options
`(1 + cot^2 θ)/cotθ`
`sqrt(1 + cot^2 θ)`
`sqrt(1 + cot^2 θ)/cotθ`
`sqrt(1 - cot^2 θ)/cotθ`
Solution
sec θ when expressed in term of cot θ, is equal to `underlinebb(sqrt(1 + cot^2 θ)/cotθ)`.
Explanation:
As we know that,
sec2 θ = 1 + tan2 θ
and cot θ = `1/tanθ`
`\implies` tan θ = `1/cotθ`
∴ sec2 θ = `1 + (1/cotθ)^2`
= `1 + 1/(cot^2 θ)`
`\implies` sec2 θ = `(cot^2 θ + 1)/(cot^2 θ)`
`\implies` sec θ = `sqrt(1 + cot^2 θ)/cotθ`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If tan θ = `13/12`, then cot θ = ?
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.