English

Sec θ when expressed in term of cot θ, is equal to ______. - Mathematics

Advertisements
Advertisements

Question

sec θ when expressed in term of cot θ, is equal to ______.

Options

  • `(1 + cot^2 θ)/cotθ`

  • `sqrt(1 + cot^2 θ)`

  • `sqrt(1 + cot^2 θ)/cotθ`

  • `sqrt(1 - cot^2 θ)/cotθ`

MCQ
Fill in the Blanks

Solution

sec θ when expressed in term of cot θ, is equal to `underlinebb(sqrt(1 + cot^2 θ)/cotθ)`.

Explanation:

As we know that,

sec2 θ = 1 + tan2 θ

and cot θ = `1/tanθ`

`\implies` tan θ = `1/cotθ`

∴ sec2 θ = `1 + (1/cotθ)^2`

= `1 + 1/(cot^2 θ)`

`\implies` sec2 θ = `(cot^2 θ + 1)/(cot^2 θ)`

`\implies` sec θ = `sqrt(1 + cot^2 θ)/cotθ`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Standard - Delhi Set 1

RELATED QUESTIONS

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If tan θ = `13/12`, then cot θ = ?


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×