Advertisements
Advertisements
Question
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Solution
LHS = `(sec A - 1)/(sec A + 1)`
= `(1/cos A - 1)/(1/cos A + 1)`
= `((1 - cos A)/cos A)/((1 + cos A)/cos A)`
= `(1 - cos A)/(1 + cos A)`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Define an identity.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`