English

(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ. - Mathematics

Advertisements
Advertisements

Question

(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

L.H.S = (tan θ + 2)(2 tan θ + 1)

= 2 tan2 θ + tan θ + 4 tan θ + 2

= 2 tan2θ + 5 tan θ + 2

Since, sec2θ – tan2θ = 1, we get, tan2θ = sec2θ – 1

= 2(sec2θ – 1) + 5 tan θ + 2

= 2 sec2θ – 2 + 5 tan θ + 2

= 5 tan θ + 2 sec2 θ ≠ R.H.S

∴ L.H.S ≠ R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.2 [Page 93]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.2 | Q 6 | Page 93

RELATED QUESTIONS

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×