Advertisements
Advertisements
प्रश्न
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
L.H.S = (tan θ + 2)(2 tan θ + 1)
= 2 tan2 θ + tan θ + 4 tan θ + 2
= 2 tan2θ + 5 tan θ + 2
Since, sec2θ – tan2θ = 1, we get, tan2θ = sec2θ – 1
= 2(sec2θ – 1) + 5 tan θ + 2
= 2 sec2θ – 2 + 5 tan θ + 2
= 5 tan θ + 2 sec2 θ ≠ R.H.S
∴ L.H.S ≠ R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If `sec theta + tan theta = x," find the value of " sec theta`
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
If cosθ = `5/13`, then find sinθ.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.