Advertisements
Advertisements
प्रश्न
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
उत्तर
We have `(cot theta + tan theta ) = m and ( sec theta - cos theta )=n`
Now, `m^2 n = [(cot theta + tan theta )^2 (sec theta - cos theta )]`
=`[(1/tan theta + tan theta )^2 (1/cos theta- cos theta )]`
=`(1+tan^2 theta)^2/tan^2 theta xx ((1-cos^2 theta))/costheta`
=`sec^4 theta/tan^2 theta xx sin^2 theta/ cos theta`
=`sec ^4 theta /(sin^2 theta/cos^2 theta) xx sin^2 theta / cos theta`
=`(cos^2 xxsec^4 theta)/costheta`
=`cos theta sec^4 theta`
=`1/ sec theta xx sec ^4 theta = sec^3 theta`
∴`(m^2 n)^(2/3) =(sec^3 theta )^(2/3) = sec^2 theta`
Again , `mn^2 = [(cot theta + tan theta )( sec theta - cos theta )^2 ]`
=`[(1/tan theta + tan theta).(1/ cos theta - cos theta)^2]`
=`((1+ tan^2 theta))/tan theta xx ((1- cos^2 theta)^2)/cos^2 theta `
=`sec^2 theta/tan theta xx sin^4 theta/cos^2 theta`
=`sec^2 theta/(sintheta/costheta) xx sin^4 theta/ cos^2 theta`
=`(sec^2 xx sin^3 theta)/cos theta`
=`1/ cos^2 theta xx sec^3 theta/ cos theta = tan^3 theta `
∴ `(mn^2)^(2/3) = (tan ^3 theta )^(2/3) = tan^2 theta`
Now ,` (m^2n)^(2/3) - (mn^2)^(2/3)`
=`sec^2 theta - tan^2 theta =1 `
=RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
` tan^2 theta - 1/( cos^2 theta )=-1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If tanθ `= 3/4` then find the value of secθ.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.