हिंदी

If `(Cot Theta ) = M and ( Sec Theta - Cos Theta) = N " Prove that " (M^2 N)(2/3) - (Mn^2)(2/3)=1` - Mathematics

Advertisements
Advertisements

प्रश्न

If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`

उत्तर

We have `(cot theta + tan theta ) = m and ( sec theta - cos theta )=n`

Now, `m^2 n = [(cot theta + tan theta )^2 (sec theta -  cos theta )]`

                  =`[(1/tan theta + tan theta )^2 (1/cos theta- cos theta )]`

                  =`(1+tan^2 theta)^2/tan^2 theta xx ((1-cos^2 theta))/costheta`

                  =`sec^4 theta/tan^2 theta xx sin^2 theta/ cos theta`

                  =`sec ^4 theta /(sin^2 theta/cos^2 theta) xx sin^2 theta / cos theta`

                  =`(cos^2 xxsec^4 theta)/costheta`

                  =`cos theta sec^4 theta`

                 =`1/ sec theta xx sec ^4 theta = sec^3 theta`

∴`(m^2 n)^(2/3) =(sec^3 theta )^(2/3) =  sec^2 theta`

Again , `mn^2 = [(cot theta + tan theta )( sec theta - cos theta )^2 ]`

                      =`[(1/tan theta + tan theta).(1/ cos theta - cos theta)^2]`

                     =`((1+ tan^2 theta))/tan theta xx ((1- cos^2 theta)^2)/cos^2 theta `

                     =`sec^2 theta/tan theta xx sin^4 theta/cos^2 theta`

                    =`sec^2 theta/(sintheta/costheta) xx sin^4 theta/ cos^2 theta`

                    =`(sec^2 xx sin^3 theta)/cos theta`

                     =`1/ cos^2 theta xx sec^3 theta/ cos theta = tan^3 theta `

∴ `(mn^2)^(2/3) = (tan ^3 theta )^(2/3) = tan^2 theta`

Now ,` (m^2n)^(2/3) - (mn^2)^(2/3)`

                   =`sec^2 theta - tan^2 theta =1 `

                   =RHS

Hence proved.

 

           

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 2 | Q 8

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


` tan^2 theta - 1/( cos^2 theta )=-1`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If tanθ `= 3/4` then find the value of secθ.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×