Advertisements
Advertisements
प्रश्न
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
उत्तर
1 + tan2 θ = sec2 θ
∴ 1 + (2)2 = sec2 θ
∴ sec2 θ = 1 + 4
= 5
sec θ = `sqrt(5)`
cos θ = `1/(sec theta)`
∴ cos θ = `1/sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `sec theta = x ,"write the value of tan" theta`.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
If sin θ = `1/2`, then find the value of θ.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.