हिंदी

If Tan θ = 2, Where θ is an Acute Angle, Find the Value of Cos θ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If tan θ = 2, where θ is an acute angle, find the value of cos θ. 

योग

उत्तर

1 + tanθ = sec2 θ  

∴ 1 + (2)2 = sec2 θ 

∴ sec2 θ  = 1 + 4

                = 5

sec θ = `sqrt(5)`

cos θ = `1/(sec theta)`

∴ cos θ = `1/sqrt(5)` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (October)

APPEARS IN

संबंधित प्रश्न

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`


If `sec theta = x ,"write the value of tan"  theta`.


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


If sin θ = `1/2`, then find the value of θ. 


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×