Advertisements
Advertisements
प्रश्न
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
उत्तर
sin 48° sec 42° + cos 48° cosec 42°
=`sin 48° cosec (90 ° - 42 °) + cos 48° sec (90° - 42°)
=` sin 48° cosec 48° + cos 48° sec 48°
=` sin 48° xx 1/ (sin 48°) + cos 48° xx 1/ ( cos 48 °)`
=1 + 1
=2
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If tanθ `= 3/4` then find the value of secθ.
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.