Advertisements
Advertisements
प्रश्न
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
उत्तर
Here, `( cosec theta + cot theta )/( cosec theta - cot theta)`
= `((cosec theta + cot theta) ( cosec theta + cot theta ))/(( cosec theta - cot theta ) ( cosec theta + cot theta))`
=` ((cosec theta + cot theta)^2)/(( cosec ^2 theta - cot^2 theta))`
=`((cosec theta + cot theta )^2) /1`
=`(cosec theta + cot theta )^2`
Again , `( cosec theta + cot theta )^2`
= ` cosec^2 theta + cot^2 theta + 2 cosec theta cot theta `
=` 1+cot^2 theta + cot^2 theta + 2 cosec theta cot theta (∵ cosec^2 theta - cot^2 theta =1)`
=` 1+2 cot^2 theta + 2 cosec theta cot theta `
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Choose the correct alternative:
tan (90 – θ) = ?
If cos θ = `24/25`, then sin θ = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
sin(45° + θ) – cos(45° – θ) is equal to ______.