Advertisements
Advertisements
प्रश्न
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
उत्तर १
LHS = ` sin theta (1+ tan theta ) + cos theta ( 1+ cot theta )`
=` sin theta + sin theta xx (sin theta)/(cos theta) + cos theta +cos theta xx (cos theta)/( sin theta)`
= `( cos theta sin ^2 theta + sin^3 theta + cos^2 theta sin theta + cos^3 theta)/(cos theta sin theta)`
=`((sin^3 theta + cos^3 theta)+(cos theta sin ^2 theta + cos ^2 theta sin theta))/(cos theta sin theta)`
=`((sin theta + cos theta )(sin^2 theta - sin theta cos theta + cos ^2 theta )+ sin theta cos theta ( sin theta + cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta )( sin^2 theta + cos^2 theta - sin theta cos theta + sin theta cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta)(1))/(cos theta sin theta)`
= `(sin theta)/(cos theta sin theta) + (cos theta)/( cos theta sin theta)`
=`1/cos theta + 1/ sin theta`
=` sec theta + cosec theta`
=RHS
उत्तर २
LHS = ` sin theta (1+ tan theta ) + cos theta ( 1+ cot theta )`
=` sin theta + sin theta xx (sin theta)/(cos theta) + cos theta +cos theta xx (cos theta)/( sin theta)`
= `( cos theta sin ^2 theta + sin^3 theta + cos^2 theta sin theta + cos^3 theta)/(cos theta sin theta)`
=`((sin^3 theta + cos^3 theta)+(cos theta sin ^2 theta + cos ^2 theta sin theta))/(cos theta sin theta)`
=`((sin theta + cos theta )(sin^2 theta - sin theta cos theta + cos ^2 theta )+ sin theta cos theta ( sin theta + cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta )( sin^2 theta + cos^2 theta - sin theta cos theta + sin theta cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta)(1))/(cos theta sin theta)`
= `(sin theta)/(cos theta sin theta) + (cos theta)/( cos theta sin theta)`
=`1/cos theta + 1/ sin theta`
=` sec theta + cosec theta`
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Find the value of sin 30° + cos 60°.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
sin2θ + sin2(90 – θ) = ?
If cos θ = `24/25`, then sin θ = ?
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
(1 + sin A)(1 – sin A) is equal to ______.