Advertisements
Advertisements
प्रश्न
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
उत्तर
LHS = sec2 θ + cosec2 θ
= `1/(cos^2 θ) + 1/(sin^2 θ)`
= `(sin^2 θ + cos^2 θ)/(sin^2 θ. cos^2 θ)`
= `1/(sin^2 θ. cos^2 θ)`
= `1/(sin^2 θ) xx 1/(cos^2 θ)`
= sec2 θ cosec2 θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ