Advertisements
Advertisements
Question
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
Options
1
0
`1/sqrt(3)`
`sqrt(3)`
Solution
`sqrt(3)`
tan 2A = tan 60° = `sqrt(3)`.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
The value of
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.