English

If 5θ and 4θ Are Acute Angles Satisfying Sin 5θ = Cos 4θ, Then 2 Sin 3θ − √ 3 Tan 3 θ is Equal to - Mathematics

Advertisements
Advertisements

Question

If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 

Options

  •  1

  •  0

  •  −1

  • \[1 + \sqrt{3}\]

MCQ

Solution

We are given that 5θ and 4θ are acute angles satisfying the following condition sin 5θ = cos 4θ. We are asked to find 2 `sin 3θ -sqrt3 tan 3θ `

⇒ `sin 5θ= cos 4θ`

⇒` cos (90°-5θ)= cos 4θ` 

⇒` 90°-5θ=4θ` 

⇒ `90=90°` 

Where `5θ` and `4θ` are acute angles 

⇒ `θ=10°`

Now we have to find: 

 `2 sin 3θ-sqrt3 tan 3θ` 

=` 2 sin 30°-sqrt3 tan 30°` 

= `2xx1/2-sqrt3xx1/sqrt3`

=`1-1`

=` 0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 25 | Page 58

RELATED QUESTIONS

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


If the angle θ = -60° , find the value of sinθ .


Evaluate cosec 31° − sec 59°


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


Solve.
`cos22/sin68`


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


Evaluate:

tan(55° - A) - cot(35° + A)


Use tables to find cosine of 26° 32’


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:


If A and B are complementary angles, then


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×