Advertisements
Advertisements
प्रश्न
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
उत्तर
RHS = `1 + 2 tan θ/cos θ + 2 tan^2 θ`
= `1 + 2 sin θ/cos^2θ + 2 sin^2 θ/cos^2 θ`
= `(cos^2 θ + 2sin θ + 2 sin^2 θ)/(cos^2θ)`
= `(1 - sin^2θ + 2 sin θ + 2 sin^2θ )/(1 - sin^2θ)`
= `(1 + sin^2θ + 2 sin θ)/(1 - sin^2θ)`
= `(1 + sin θ)^2/( 1 + sin θ)(1 - sin θ)`
= `(1 + sin θ)/(1 - sin θ)`
= LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`