Advertisements
Advertisements
प्रश्न
Prove that sec2θ – cos2θ = tan2θ + sin2θ
उत्तर
L.H.S = sec2θ – cos2θ
= sec2θ – (1 – sin2θ) ......`[(because sin^2theta + cos^2theta = 1),(therefore 1 - sin^2theta = cos^2theta)]`
= sec2θ – 1 + sin2θ
= tan2θ + sin2θ ......`[(because 1 + tan^2theta = sec^2theta),(therefore tan^2theta = sec^2theta - 1)]`
= R.H.S
∴ sec2θ – cos2θ = tan2θ + sin2θ
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`(sec^2 theta-1) cot ^2 theta=1`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
(1 + sin A)(1 – sin A) is equal to ______.