Advertisements
Advertisements
प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
उत्तर
Given that α is in quadrant IV, where x is positive and y is negative.
`sec alpha=r/x=2/sqrt3`
`Let r=2k, `
`r^2=x^2+y^2`
`therefore(2k^2)=(sqrt(3k))^2+y^2`
`therefore y^2=4k^2-3k^2=k^2`
`therefore y=+-k`
`cosec alpha =r/y=(2k)/-k=-2`
Substituting the value of cosec ,we get
`(1-cosec alpha)/(1+cosec alpha)=(1-(-2))/(1+(-2))=(1+2)/(1-2)=3/-1 `
`(1-cosec alpha)/(1+cosec alpha)=-3`
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If `secθ = 25/7 ` then find tanθ.
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A