Advertisements
Advertisements
प्रश्न
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
उत्तर
LHS =` (1+ cos theta + sin theta)/(1+ cos theta-sin theta)`
=` ({(1+cos theta)+ sin theta}{(1+ cos theta)+ sin theta})/({(1+ cos theta )-sin theta}{(1+ cos theta )+ sin theta}) {"Multiplying the numerator and denominator by "(1 + costheta +sin theta}`
=`({(1+ cos theta)+ sin theta}^2)/({(1+ cos theta )^2-sin ^2 theta})`
=`(1+ cos^2 theta + 2 cos theta + sin ^2 theta + 2 sin theta (1+ cos theta))/(1+ cos^2 theta + 2 cos theta - sin ^2 theta)`
=`(2+2 cos theta + 2 sin theta (1+ cos theta))/(1+ cos ^2 theta + 2 cos theta -(1-cos^2 theta))`
=`(2(1+ cos theta)+2sin theta (1+ cos theta))/(2 cos^2 theta+2 cos theta)`
=`(2(1+ cos theta) (1+ sin theta))/( 2 cos theta (1+ cos theta))`
=`(1+sin theta)/cos theta`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If `secθ = 25/7 ` then find tanθ.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Evaluate:
`(tan 65°)/(cot 25°)`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If cos θ = `24/25`, then sin θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
(1 + sin A)(1 – sin A) is equal to ______.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`