English

If sec θ = 257, find the value of tan θ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)

Sum

Solution

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^2`

∴ tan2 θ = `625/49 - 1`

= `(625 - 49)/49`

= `576/49`

∴ tan θ = `24/7` ........(by taking square roots)

shaalaa.com
  Is there an error in this question or solution?
2019-2020 (March) Set 1

APPEARS IN

RELATED QUESTIONS

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


If sec θ = `25/7`, then find the value of tan θ.


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×