Advertisements
Advertisements
Question
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Solution
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^2`
∴ tan2 θ = `625/49 - 1`
= `(625 - 49)/49`
= `576/49`
∴ tan θ = `24/7` ........(by taking square roots)
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ