Advertisements
Advertisements
प्रश्न
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
उत्तर
`(cot^2 theta - 1/ sin^2 theta)`
=`(cot^2 theta - cosec^2 theta )`
=-1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Find the value of ( sin2 33° + sin2 57°).
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Choose the correct alternative:
1 + cot2θ = ?
If tan θ = `13/12`, then cot θ = ?
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)