हिंदी

Write the Value of `(Cot^2 Theta - 1/(Sin^2 Theta))`. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 

उत्तर

`(cot^2 theta - 1/ sin^2 theta)`

     =`(cot^2 theta - cosec^2 theta )`

     =-1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 6

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Find the value of ( sin2 33° + sin2 57°).


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


Choose the correct alternative:

1 + cot2θ = ? 


If tan θ = `13/12`, then cot θ = ?


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×