Advertisements
Advertisements
प्रश्न
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
उत्तर
According to the question,
cosec θ + cot θ = p
Since, cosec θ = `1/sintheta` and cot θ = `costheta/sintheta`
`1/sintheta + costheta/sintheta` = p
`(1 + costheta)/sintheta` = p
Squaring on L.H.S and R.H.S,
`((1 + costheta)/sin theta)^2` = p2
`(1 + cos^2 theta + 2 cos theta)/(sin^2 theta)` = p2
Applying component and dividend rule,
`((1 + cos^2 theta + 2 cos theta) - sin^2 theta)/((1 + cos^2 theta + 2 cos theta) + sin^2 theta) = ("p"^2 - 1)/("p"^2 + 1)`
= `((1 - sin^2theta) + cos^2 theta + 2 cos theta)/(sin^2 theta + cos^2 theta + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`
Since, 1 – sin2θ = cos2θ and sin2θ + cos2θ = 1
`(cos^2 theta + cos^2 theta + 2 cos theta)/(1 + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`
`(2 cos^2 theta + 2 cos theta)/(2 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`
`(2 cos theta(cos theta + 1))/(2(cos theta + 1)) = ("p"^2 - 1)/("p"^2 + 1)`
cos θ = `("p"^2 - 1)/("p"^2 + 1)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ