Advertisements
Advertisements
Question
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
Solution
Proof: L.H.S. = cot θ + tan θ
= `bbcos θ/bbsin θ + bbsin θ/bbcos θ` ......`[∵ cot θ = bbcos θ/bbsin θ, tan θ = bb sinθ/bbcos θ]`
= `(bb(cos^2θ) + bb(sin^2θ))/(bbsin θ xx bbcos θ)` .....`[∵ bb(cos^2θ) + bb(sin^2θ) = 1]`
= `1/(bb sin θ xx bb cos θ)`
= `1/bb sin θ xx 1/bb cos θ`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/bb sin θ, sec θ = 1/bb cos θ]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
APPEARS IN
RELATED QUESTIONS
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos theta = 7/25`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
The value of sin² 30° – cos² 30° is ______.
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
Find will be the value of cos 90° + sin 90°.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.