English

Prove that: cot θ + tan θ = cosec θ·sec θ Proof: L.H.S. = cot θ + tan θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ

Fill in the Blanks
Sum

Solution

Proof: L.H.S. = cot θ + tan θ

= `bbcos θ/bbsin θ + bbsin θ/bbcos θ`  ......`[∵ cot θ = bbcos θ/bbsin θ, tan θ = bb sinθ/bbcos θ]`

= `(bb(cos^2θ) + bb(sin^2θ))/(bbsin θ xx bbcos θ)`  .....`[∵ bb(cos^2θ) + bb(sin^2θ) = 1]`

= `1/(bb sin θ xx bb cos θ)`

= `1/bb sin θ xx 1/bb cos θ`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/bb sin θ, sec θ = 1/bb cos θ]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (March) Model set 1 by shaalaa.com

RELATED QUESTIONS

In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of

  1.  sin A cos C + cos A sin C
  2. cos A cos C − sin A sin C

State whether the following are true or false. Justify your answer.

sin θ = `4/3`, for some angle θ.


If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos A = 4/5`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos theta = 7/25`


If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`


if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`


Evaluate the following

cos 60° cos 45° - sin 60° ∙ sin 45°


Evaluate the following

cos2 30° + cos2 45° + cos2 60° + cos2 90°


Evaluate the Following

4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°


Evaluate the Following

`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`


Evaluate the Following

(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)


The value of sin² 30° – cos² 30° is ______.


3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.


If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.


Find will be the value of cos 90° + sin 90°.


Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ


Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`


If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.


In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×