Advertisements
Advertisements
प्रश्न
Evaluate:
cosec (65° + A) – sec (25° – A)
उत्तर
cosec (65° + A) – sec (25° – A)
= cosec [90° – (25° – A)] – sec (25° – A)
= sec (25° – A) – sec (25° – A)
= 0
APPEARS IN
संबंधित प्रश्न
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If tanθ = 2, find the values of other trigonometric ratios.
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.