मराठी

If ∆ABC is right angled at C, then the value of cos (A + B) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If ∆ABC is right angled at C, then the value of cos (A + B) is ______.

पर्याय

  • 0

  • 1

  • `1/2`

  • `sqrt(3)/2`

MCQ
रिकाम्या जागा भरा

उत्तर

If ∆ABC is right angled at C, then the value of cos (A + B) is 0.

Explanation:


We know that,

In ∆ABC,

Sum of three angles = 180°

i.e., ∠A + ∠B + ∠C = 180°

But right angled at C

i.e., ∠C = 90°  ...[Given]

∠A + ∠B + 90° = 180°

⇒ A + B = 90°   ...[∵∠A = A]

∴ cos (A + B) = cos 90° = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 8 | पृष्ठ ९०
आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 31 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If the angle θ = -60° , find the value of sinθ .


If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`


Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA


Show that : sin 42° sec 48° + cos 42° cosec 48° = 2


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


Prove that:

sec (70° – θ) = cosec (20° + θ)


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


The value of tan 72° tan 18° is


Choose the correct alternative:

If ∠A = 30°, then tan 2A = ?


`tan 47^circ/cot 43^circ` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×