Advertisements
Advertisements
प्रश्न
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
उत्तर
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
= 3 cos (90° – 10°) cosec 10° + 2 cos (90° – 31°) cosec 31°
= 3 sin 10° cosec 10° + 2 sin 31° cosec 31°
= 3 + 2
= 5
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Evaluate.
sin235° + sin255°
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
sec (70° – θ) = cosec (20° + θ)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?