Advertisements
Advertisements
प्रश्न
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
उत्तर
L.H.S. = `(cos(90^circ - theta)costheta)/cottheta`
= `(sinthetacostheta)/(costheta/sintheta)`
= `(sinthetacostheta xx sintheta)/costheta`
= sin2θ
= 1 – cos2θ = R.H.S.
APPEARS IN
संबंधित प्रश्न
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find sine of 21°
Use tables to find cosine of 8° 12’
Use tables to find cosine of 26° 32’
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.