Advertisements
Advertisements
प्रश्न
What is the value of (cos2 67° – sin2 23°)?
उत्तर
`cos^2 67^@ - sin^2 23^@`
`= cos^2 67^@ - sin^2 (90^@ - 67^@)`
`= cos^2 67^@ - cos^2 (67^@)` `(∵ sin^2 (90 - theta ) = cos^2 theta)`
= 0
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 34° 42'
Use tables to find cosine of 65° 41’
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Write the maximum and minimum values of sin θ.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
If sin 3A = cos 6A, then ∠A = ?