Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
उत्तर
Since, A and B are complementary angles, A + B = 90°
cot B + cos B
= cot (90° – A) + cos (90° – A)
= tan A + sin A
= `sinA/cosA + sinA`
= `(sinA + sinAcosA)/cosA`
= `(sinA(1 + cosA))/cosA`
= sec A sin A (1 + cos A)
= sec A sin (90° – B) [1 + cos (90° – B)]
= sec A cos B (1 + sin B)
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If 8 tan x = 15, then sin x − cos x is equal to
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.