Advertisements
Advertisements
प्रश्न
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
पर्याय
1
−1
2
0
उत्तर
We have: ` (xcosec^2 30° sec^2 45°)/ (8 cos^2 45° sin^2 60°)= tan ^2 60°-tan ^2 30°`
Here we have to find the value of x
As we know that `cos 45°=1/sqrt2 , sec 45°=sqrt2 , tan 30°=1sqrt3, tan 60°=sqrt3 , cos 30°=sqrt3/2, cose c 30°=2`
So
⇒`( x cosec^2 30° sec ^2 45°)/(8 cos^2 45° sin ^2 60)`
⇒`( x xx4xx2)/(8xx1/2xx3/4)=3-1/3`
⇒ `(8x)/3=8/3`
⇒ `x=1`
APPEARS IN
संबंधित प्रश्न
Evaluate `(sin 18^@)/(cos 72^@)`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of tan 1° tan 2° tan 3°…. tan 89° is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.