Advertisements
Advertisements
प्रश्न
Prove that:
sin (28° + A) = cos (62° – A)
उत्तर
sin (28° + A) = sin [90° – 62° – A] = cos (62° – A)
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Prove that:
tan (55° - A) - cot (35° + A)
What is the maximum value of \[\frac{1}{\sec \theta}\]
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of tan 72° tan 18° is