Advertisements
Advertisements
प्रश्न
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
पर्याय
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
1
2
उत्तर
We have to evaluate the value. The formula to be used,
`a^3+b^3=(a+b)(a^2+b^2-ab)`
`a^3-b^3=(a-b)(a^2+b^2+ab)`
So,
=`(cos^3 20°-cos 70)/(sin^3 70°-sin^3 20)`
=` ((cos 20°-cos 70)(cos^2 20°+cos^2 70+cos 20° cos 70°))/((sin 70°-sin 20°)(sin^2 70°+sin^2 20°+sin 70° sin 20°))`
Now using the properties of complementary angles,
= `((sin 70°- sin 20°)(sin^2 70°+cos^2 70+cos 20° cos 70°))/((sin 70°-sin 20°)(sin ^2 70°+cos ^2 70°+sin 70° sin 20°))`
=`(1+cos 20° cos 70°)/(1+sin 70° sin 20°)`
=`( 1+ cos20° cos 70°)/(1+cos 20° cos 70°)`
=1
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Evaluate `(sin 18^@)/(cos 72^@)`
Evaluate.
sin235° + sin255°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 21°
Use tables to find cosine of 8° 12’
Prove that:
sin (28° + A) = cos (62° – A)
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If tanθ = 2, find the values of other trigonometric ratios.
The value of cos 1° cos 2° cos 3° ..... cos 180° is
The value of
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
The value of (tan1° tan2° tan3° ... tan89°) is ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.