मराठी

The Value of Cos 3 20 ° − Cos 3 70 ° Sin 3 70 ° − Sin 3 20 ° - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 

पर्याय

  • \[\frac{1}{2}\]

  • \[\frac{1}{\sqrt{2}}\]

  •  1

MCQ

उत्तर

We have to evaluate the value. The formula to be used, 

`a^3+b^3=(a+b)(a^2+b^2-ab)` 

`a^3-b^3=(a-b)(a^2+b^2+ab)` 

So, 

=`(cos^3 20°-cos 70)/(sin^3 70°-sin^3 20)`

=` ((cos 20°-cos 70)(cos^2 20°+cos^2 70+cos 20° cos 70°))/((sin 70°-sin 20°)(sin^2 70°+sin^2 20°+sin 70° sin 20°))`

Now using the properties of complementary angles, 

= `((sin 70°- sin  20°)(sin^2 70°+cos^2 70+cos 20° cos 70°))/((sin 70°-sin 20°)(sin ^2 70°+cos ^2 70°+sin 70° sin 20°))`

=`(1+cos 20° cos 70°)/(1+sin 70° sin 20°)` 

=`( 1+ cos20° cos 70°)/(1+cos 20° cos 70°)`

=1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 12 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


Evaluate `(sin 18^@)/(cos 72^@)`


Evaluate.
sin235° + sin255°


Find the value of x, if sin 3x = 2 sin 30° cos 30°


Use tables to find sine of 21°


Use tables to find cosine of 8° 12’


Prove that:

sin (28° + A) = cos (62° – A)


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


If tanθ = 2, find the values of other trigonometric ratios.


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


The value of (tan1° tan2° tan3° ... tan89°) is ______.


If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×