मराठी

The Value of Cos2 17° − Sin2 73° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cos2 17° − sin2 73° is 

पर्याय

  •  1

  • \[\frac{1}{3}\]

  • 0

  • -1

MCQ

उत्तर

We have: 

`cos^2 17°-sin^2 73°`

= `cos^2(90°-73°)-sin^2 73°` 

=` sin^2 73°-sin^2 73°` 

= 0

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 11 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If the angle θ = -60° , find the value of sinθ .


Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Solve.
sin42° sin48° - cos42° cos48°


Evaluate:

`sin80^circ/(cos10^circ) + sin59^circ  sec31^circ`


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°. 


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


The value of tan 10° tan 15° tan 75° tan 80° is 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Find the value of the following:

sin 21° 21′


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×