Advertisements
Advertisements
प्रश्न
Find the value of x, if sin 2x = 2 sin 45° cos 45°
उत्तर
sin 2x = 2 sin 45° cos 45°
sin 2x = `2(1/sqrt2)(1/sqrt2)`
sin 2x = 1 = sin 90°
2x = 90°
Hence, x = 45°
APPEARS IN
संबंधित प्रश्न
If tan A = cot B, prove that A + B = 90
Write all the other trigonometric ratios of ∠A in terms of sec A.
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°