Advertisements
Advertisements
प्रश्न
Find the value of x, if sin 2x = 2 sin 45° cos 45°
उत्तर
sin 2x = 2 sin 45° cos 45°
sin 2x = `2(1/sqrt2)(1/sqrt2)`
sin 2x = 1 = sin 90°
2x = 90°
Hence, x = 45°
APPEARS IN
संबंधित प्रश्न
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If 8 tan x = 15, then sin x − cos x is equal to
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]