Advertisements
Advertisements
प्रश्न
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
उत्तर
Given: tan` A=5/12`
`"Perpendicular"/"Base"=5/12`
`"Perpendicular"=5`
`Base=12`
`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
We know that: ` tan A="Perpendicular"/"Base"`
`"Hypotenuse"=sqrt((5)^2+(12)^2)`
`"Hypotenuse"=sqrt169`
`"Hypotenuse"=13`
Now we find, `(sin A+cos A) SecA`
⇒ `(Sin A+Cos A)Sec A=(5/13+12/13)xx13/12`
⇒ `(sin A+cos A)sec A=17/13xx13/12`
⇒ `(sin A+cos A) sec A=17/12`
Hence the value of` (sin A+ cos A)sec A "is" 17/12`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 8 tan x = 15, then sin x − cos x is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.