मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

In ∆ABC, cos C = 1213 and BC = 24, then AC = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?

बेरीज

उत्तर


cos C = `12/13`     .....(i) [Given]

In ∆ABC,

Let ∠ABC = 90°

∴ cos C = `"BC"/"AC"`    .....(ii) [By definition]

∴ `"BC"/"AC" = 12/13`  ......[From (i) and (ii)]

∴ `24/"AC" = 12/13`

∴ `(24 xx 13)/12` = AC

∴ `312/12` = AC

∴ AC = 26 units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.3 (B)

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`


if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`


if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Use tables to find cosine of 9° 23’ + 15° 54’


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


The value of tan 10° tan 15° tan 75° tan 80° is 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


Solve: 2cos2θ + sin θ - 2 = 0.


If tan θ = cot 37°, then the value of θ is


The value of (tan1° tan2° tan3° ... tan89°) is ______.


`tan 47^circ/cot 43^circ` = 1


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×