Advertisements
Advertisements
प्रश्न
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
उत्तर
Given `tan theta = 1/sqrt2`
We have to find the value of the expression `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
We know that,
`1 +cot^2 theta = cosec^2 theta`
`=> cosec^2 theta - cot^2 theta = 1`
Therefore, the given expression can be written as
`(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta) = (cosec^2 theta - sec^2 theta)/(1 + cot^2 theta + cot^2 theta)`
`tan theta = 1/sqrt2 => cot theta = sqrt2`
`(cosec^2 theta - sec^2 theta)/(1 + 2 cot^2 theta) = (1 + cot^2 theta - (1 + tan^2 theta))/(1 + 2 cot62 theta)` (since `sec^2 theta =1 + tan^2 theta`)
`= (cot^2 theta - tan^2 theta)/(1 + 2 cot^ theta)`
`= ((sqrt2)^2 - (1/sqrt2)^2)/(1 + 2 xx (sqrt2)^2)`
`= 3/10`
Hence, the value of the given expression is 3/10
APPEARS IN
संबंधित प्रश्न
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Solve.
sin42° sin48° - cos42° cos48°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
Sin 2A = 2 sin A is true when A =
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
In the following figure the value of cos ϕ is
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
If tan θ = cot 37°, then the value of θ is
If tan θ = 1, then sin θ . cos θ = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.