Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
उत्तर
LHS = `(cotA - cosecA)^2`
= `[cosA/sinA - 1/sinA]^2`
= `[(cosA - 1)/sinA]^2`
= `(cosA - 1)^2/sin^2A = (cosA - 1)^2/(1 - cos^2A)`
= `(-(1 - cosA))^2/((1 - cosA)(1 + cosA)) = ((1 - cosA)(1 - cosA))/((1 - cosA)(1 + cosA))`
= `(1 - cosA)/(1 + cosA)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
`(sec^2 theta-1) cot ^2 theta=1`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ