English

If SecΘ+TanΘ=P, Prove that (I)SecΘ=12(P+1P)(Ii)TanΘ=12(P-1P)(Iii)SinΘ=P2-1P2+1 - Mathematics

Advertisements
Advertisements

Question

If secθ+tanθ=p, prove that

(i)secθ=12(p+1p)  (ii)tanθ=12(p-1p)(iii)sinθ=p2-1p2+1

Solution

(i) We have , secθ+tanθ=p          ....................(1)

secθ+tanθ1×secθ-tanθsecθ-tanθ=p

sec2θ-tan2θsecθ-tanθ=p

1secθ-tanθ=p

secθ-tanθ=1p       .........................(2)

Adding (1) and (2) , We get

2secθ=p+1p

secθ=12(p+1p)

(ii) subtracting (2) feom (1) , We get  

2tanθ=(p-1p)

tanθ=12(p-1p)

(iii) Using  (i) and (ii) , We get 

sinθ=tanθsecθ

                =12(p-1p)12(p+1p)

               =(p2-1p)(p2+1)p

sinθ=p2-1p2+1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 13
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.