Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
उत्तर
L.H.S. = `1 - cos^2A/(1 + sinA)`
= `(1 + sinA - cos^2A)/(1 + sinA)`
= `(sinA + sin^2A)/(1 + sinA)`
= `(sinA(1 + sinA))/(1 + sinA)`
= sin A = R.H.S.
APPEARS IN
संबंधित प्रश्न
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sec2θ – cos2θ = tan2θ + sin2θ