Advertisements
Advertisements
प्रश्न
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
उत्तर
L.H.S = `(cos(90 - "A"))/(sin "A")`
= `"sin A"/"sin A"`
= 1
R.H.S = `(sin(90 - "A"))/(cos "A")`
= `"cos A"/"cos A"`
= 1
∴ L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Choose the correct alternative:
sec2θ – tan2θ =?
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.