Advertisements
Advertisements
प्रश्न
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
उत्तर
Given: 1 + sin2 θ = 3 sin θ cos θ
Dividing L.H.S and R.H.S equations with sin2θ,
We get,
`(1 + sin^2 theta)/(sin^2 theta) = (3 sin theta cos theta)/(sin^2 theta)`
`\implies 1/(sin^2 theta) + 1 = (3 cos theta)/sintheta`
cosec2 θ + 1 = 3 cot θ
Since, cosec2 θ – cot2 θ = 1
`\implies` cosec2 θ = cot2 θ + 1
`\implies` cot2 θ + 1 + 1 = 3 cot θ
`\implies` cot2 θ + 2 = 3 cot θ
`\implies` cot2 θ – 3 cot θ + 2 = 0
Splitting the middle term and then solving the equation,
`\implies` cot2 θ – cot θ – 2 cot θ + 2 = 0
`\implies` cot θ(cot θ – 1) – 2(cot θ + 1) = 0
`\implies` (cot θ – 1)(cot θ – 2) = 0
`\implies` cot θ = 1, 2
Since,
tan θ = `1/cot θ`
tan θ = `1, 1/2`
Hence proved.
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.