हिंदी

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or 12. - Mathematics

Advertisements
Advertisements

प्रश्न

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.

योग

उत्तर

Given: 1 + sin2 θ = 3 sin θ cos θ

Dividing L.H.S and R.H.S equations with sin2θ,

We get, 

`(1 + sin^2 theta)/(sin^2 theta) = (3 sin theta cos theta)/(sin^2 theta)`

`\implies 1/(sin^2 theta) + 1 = (3 cos theta)/sintheta`

cosec2 θ + 1 = 3 cot θ

Since, cosec2 θ – cot2 θ = 1 

`\implies` cosec2 θ = cot2 θ + 1

`\implies` cot2 θ + 1 + 1 = 3 cot θ

`\implies` cot2 θ + 2 = 3 cot θ

`\implies` cot2 θ – 3 cot θ + 2 = 0

Splitting the middle term and then solving the equation,

`\implies` cot2 θ – cot θ – 2 cot θ + 2 = 0

`\implies` cot θ(cot θ – 1) – 2(cot θ + 1) = 0

`\implies` (cot θ – 1)(cot θ – 2) = 0

`\implies` cot θ = 1, 2

Since,

tan θ = `1/cot θ`

tan θ = `1, 1/2`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 4 | पृष्ठ ९९

संबंधित प्रश्न

Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


`sec theta (1- sin theta )( sec theta + tan theta )=1`


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×