Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
उत्तर
LHS = `(cosA + sinA)^2 + (cosA - sinA)^2`
= `cos^2A + sin^2A + 2cosA.sinA + cos^2A + sin^2A - 2cosA.sinA`
= `2(cos^2A + sin^2A) = 2` = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ