Advertisements
Advertisements
प्रश्न
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
उत्तर
It is given that,
\[\cos\left( \alpha + \beta \right) = 0\]
\[ \Rightarrow \cos\left( \alpha + \beta \right) = \cos90° \left( \cos90° = 0 \right)\]
\[ \Rightarrow \alpha + \beta = 90° \]
\[ \Rightarrow \alpha = 90°- \beta\]
\[\text{ Now, put }\alpha = 90°- \beta in \sin\left( \alpha - \beta \right) . \]
\[ \therefore \sin\left( \alpha - \beta \right)\]
\[ = \sin\left( 90° - \beta - \beta \right)\]
\[ = \sin\left( 90°- 2\beta \right) \]
\[ = \cos2\beta \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0