Advertisements
Advertisements
प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
उत्तर
L.H.S `cosA/(1+sinA) + tan A`
`= (cos A(1-sinA))/((1+sinA)(1-sinA)) + sinA/cosA`
`= (cosA - sinAcosA)/(1-sin^2A) + sinA/cosA`
`= (cosA - sinAcosA)/cos^2A + sinA/cosA`
`= 1/cosA - sinA/cosA + sinA/cosA`
`= 1/cosA`
= secA
=R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
tan θ cosec2 θ – tan θ is equal to
Choose the correct alternative:
Which is not correct formula?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that sec2θ – cos2θ = tan2θ + sin2θ