Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
Which is not correct formula?
विकल्प
1 + tan2θ = sec2θ
1 + sec2θ = tan2θ
cosec2θ − cot2θ = 1
sin2θ + cos2θ = 1
उत्तर
1 + sec2θ = tan2θ
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Define an identity.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If tan α + cot α = 2, then tan20α + cot20α = ______.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.