हिंदी

Choose the correct alternative: Which is not correct formula? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

Which is not correct formula?

विकल्प

  • 1 + tan2θ = sec2θ

  • 1 + sec2θ = tan2θ

  • cosec2θ − cot2θ = 1

  • sin2θ + cos2θ = 1

MCQ

उत्तर

1 + sec2θ = tan2θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (A)

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Define an identity.


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


If tan α + cot α = 2, then tan20α + cot20α = ______.


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×