Advertisements
Advertisements
प्रश्न
If tanθ `= 3/4` then find the value of secθ.
उत्तर
If tanθ = 34
1 + tan2θ = sec2θ
∴ 1 + `(3/4)^2= sec^2θ`
∴ `1 + 9/16 = sec^2θ`
∴ `25/16 = sec^2θ`
∴ `secθ = 5/4`
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.